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DETERMINING THE PROBABILITY OF AT LEAST ONE SUCCESS IN TRIALS
CONDUCTED ON THE LIGHTED PORTION OF A STAR SHAPED CURVE SUBJECT
TO A POISSON SHADOWING PROCESS
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o
M. Yadin and S. Zacks')

Technion, Israel Institute of Technology
and
State University of New York at Binghamton

Abstract

\K star shaped curve, ( , in the plane is subject to a Poisson shadowing
process. According to this process, disks of random size appear at
random locations in a region between a source of light, which is at the
origin, and the curve C . These disks cast shadows on C . Trials are
conducted along the lighted portion of C . Each trial requires a fixed
length, £ , of C . The different trials are independent and have a
fixed probability, P , of success. The number of trials conducted along
C is a random variable, N , which depends on the random length of the
lighted portion of C . The success probability is P =1 - E{qN} » where
q=l~p . Lower and upper bounds for P are derived. A numerical example

shows cases in which these bounds could be very close.\

Key Words: Poisson Shadewing Process, Random Fields, Measure o4
Visibility, Moments of Visdbility, Success Probabilities
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1. Introduction

Consicer a star-shaped curve in the plane, C , and a source of
light at the origin, O . If there are no obstacles between the origin
and the curve C , the whole curve is in the light or visible. Certain
experiments (trials) can be conducted along the lighted portion of the
curve. Each such trial requires a length £ of C , and the probabil-
ity of its success is p , O<p<l . Let L{C} be the total length of
C. If C is completely visible, N = [L{C}/£] trials can be con-
ducted. ([a] designates the integer part of a.) Assume that all these
trials are independent, having the same success probability, p ,
(Bernoulli trials). Thus, the probability of at leasﬁ one success, when
C is completely lighted, is S =1 - qN , where q=1~p . In reality,
C may not be completely visible, due to shadows cast on it by objects
(disks, say), which are randomly dispersed in a region between O and (C .
The centers of the disks follow a Poisson process and their diameters are
of random size. Thus, the total number of trials that can be performed
along the visible portion of ( is the random variable

K

N= 3 [Xi/K] , where K 1s the random number of connected subsets
i=1

(disjoint segments) of ( , which are visible, and Xi
the i-th such subset. The probability of at least ome success, under

is the length of

this random shadowing, is P =1~ Q, where Q = E{qN} . The present
study develops a method for determining upper and lower bounds for Q .
This method is based on the methodology developed by Yadin and Zacks [1],
for determining the moments of the total visible portion of C ,

k _ .
ViC} = ¢ Xi . We show that a lower bound for Q (an upper bound for
i=1

P , respectively) is the value of the moment generating function (MGF) of

V{C} , at the point N = fnq/fL . The upper bound for Q (lower bound for
* %

P) can be obtained by considering Q = E{qN } , where

k xi-t *
Nw= % " A » and a, = max(a,0) . In section 2 we present the
+

1= +

structure of the Poisson field of shadowing disks and review. the main




results of [1], which lead to the MGF of V{C} . 1In Section 3 we present 7
lower and upper bounds for Q , which are based on the MGF of V{C} and ]

1%

*
vV{C}l= ¢ (x,=0), .
gy 1

Section 4 presents a numerical example for annular regions and a >

standard~uniform Poisson field of shadowing disks. It is shown, in the
numerical example of Section 4, that the lower and upper bounds for Q
developed in the present paper could be very close and effective. The
present paper is very tightly linked with our previous paper [1l], in
which the general theory for the determination of the moments of visi-
bility, u = E(V{C}} , 1is presented. As such it could be considered

as an extension of [1] for an important class of applications. |
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2. The Poisson Field of Shadowing Obstacles, and the Moments of V{C} .

Consider a star-shaped curve, C , given by a function r(s) omn an
interval [s',s''] , i.e., 4
C=1{(,8) ; p=x() ,s"<6ss""} . (2.1)
We further assume that shadows on C are cast by disks, which are
randomly distributed within a regionm, Cl » bounded by the curves

U=1(,8) ; p =u(d) , sk <8 < s**} and
W={(p,8) ; p=w(B) , s* < B < sk} . Fach disk is characterized by a
point (p,€,y) , where (p,8) are the polar coordinates of its center
and y 1s its diameter. It is assumed that the centers are uniformly
distributed between U and W and the diameters of the disks are i.i.d.
random variables having a c.d.f. G(y) concentrated on [a,b] (the standard case).
Moreover, wu(8) , w(6) and b are such that both the origin, 0 , is
uncovered and the curve C 1s not intersected by any one of the random
disks. For the precise conditions see [1]. It is further assumed that
the number of disks whose centers fall within a subset C of Cl has a
Poisson distribution, with mean A , when A is the area of C .

A point P = (r(s),s) is said to be visible, if the ray UP is not

intersected by any shadowing disk.
The measyre of visibility V{C} 4is defined as

s"’
V{C} = f’ I(s)&(s)ds , (2.2)
s

where I(s)=1 4f the point (r(s),s) 4s in the light (visible), and
I(s)=0 otherwise. 4£(s)ds = [rz(s) + (r'(s))z}llzds is the infinitis-
mal length of C at (r(s),s) . The moments of V{C} where expressed
in [ 1] in terms of the K-functions, K_(s,t) and K, (s,t) . uK_(s,t)
and uK+(s,t) are, respectively, the expected number of disks in C1 ’
whose centers have orientation coordinates in [s-t,s] ([s,s+t], resp.),
and which do not intersect the ray with orientation s . It is shown in
[ 1] that these functions are given by

T e AP o W Gy g T e
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s w(8)
K (s,t) = J [/  G(y(p,s-8))pdpds
s=t u(@)
and (2.3)
s+t w(8)
K (s,t) = f J  G(y(p,0-s))pdpds ,
s u(8)
where
2psin|s-60] , 1f |s=-8)<n/2
y(0,6-8): y(p,s-8) = (2.4)
2p , 1f ls-8l2m/2

is the maximal diameter of a disk centered at (p,6) , which does not
intersect the ray with orientation s .

It is shown in { 1] that the n-th moment of V{(}! is

n
u_ = n! o o o J P(Sys:0058_ ) N L(s,)ds (2.5)
n s'Ssls...ssnSS" 17 i=1 SR

where p(sl,...,sn) is the probability that n points on C , with
orientation coordinates sl,...,sn are simultaneously visible. It is

further shown that

P(8;,...,8 )= exp v{Cl}}exp{JK_(sl,sl-s*) +

(2.6)
A n-1 8141731 8141754

in which

;
{
i
&
\
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shi
- B 2 _ 2
vic,} = 2 : (w (s)-u (s))ds‘

Furthermore, let

¥ (s) = exp{uk_(s,s-s")} ,

and define recursively, for j 21

-
¥(s) = J;' l(y)‘!'j_l(y) exp{n K_(y,i;l) + uK+(y,§'-z'l)}dy

Then

sl ]
u, = ul exp{v{cli} i' L(s)¥__,(s) expluK, (s,s**-5)}ds

2.7

(2.8)

{(2.9)

(2.10)
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3. The MGF of V{C} and The Bounds for Q

In Section 1 we introduced the random variables K,xl,xz,...,xx ’
which are the number of lighted (visible) disjoint segments of C ,
and their length. Accordingly,

K k
ViC} = Xi . We also defined the random variable N = [ [X i/ZJ.
1=} i=1

Thus N < V{C}/€ , with probability ome. It follows, for every
q, 0<q<l , that.

¢ = E{q"} 2 E{;"{C}"—} - M, (1ng/0) (3.1)

where M, (u) is the MGF of v{C} . Thus, M, (1ng/€) 1is a lower bound
for Q . Notice that, since V(C) = L(C) < » , all the moments of
V(C) are bounded by powers of I.(C) . Hence, the MGF of V(C) can be
expressad as -

o 1

u
M, (u) = 150 iT™ s =®<uc® (3.2)

For the derivation of an upper bound for Q , we consider the random

k X.-£
i
variable N* = } . Since N* < N with probability one,
| gy L F
‘)
Q% = E@N} 2Q . (3.3) ')
In order to obtain Q* we define a new visibility measure i}
i »
VR = T (XD, (3.4)
i=]

The moments of V*((C) can be obtained by the formulae presented in
Section 2, in which the K-functions in (2.6) - (2.10) are modified in
the following manner. Replace K (s,t) and K+(s,t) by K_(}-:l(s) , |
(t-rl(s))*_) and K*(s+11(s) , (t-rl(s))+) , respectively, where rl(s)
should be determined so that

8
s L(s)ds = £/2 (3.5)
s-tl(s)
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and, similarly, Tz(s) should satisfy the equation

s+12(s)
! L(s)ds ~ 2/2 . (3.6)
s

By definition, K4(s,0) = (0 for all s .

*
More specifically, let By (n=1,2,...) be the n-th moment of V*(C) ,
which is given by

* n
B, = n! f .é. ! p*(sl,...,sn) igl !.(si)dsi s 3.7)

where S = vis' £s, S ...<8 % s"}
1 n

The function p*(sl,...,sn) is the probability that the union of n
segments of C , each one of length £ , centered around the points
(r(sl),si) , i=1,...,n , is completely visible. 'n other words, define
the indicator function 1I*(s) , which is equal to 1 if the segments
of C of length £ , centered at (r(s),s) , is completely visible and
is equal to 0 otherwise. Accordingly,

8
VE(C) = / Iz(s)l(s)ds ) (3.8)
s'

n
As explained above, p*(sl,...,sn) =E{NI1 (si)} . Following the theory
i=1

developed in [ 1] , p*(sl,...,sn) is given, as in (2.6), by

p*(sl,...,sn) = exp -v{Cl}} exp{uk_ (sl-'rl(sl) ’ (Sfrl(sl)-S)*)
+ K, (s bry(s ) , (sh*es =1 (s ), )+

n-l 8 -g
141781
Y m Ko(si*'fz(“i) 3 U a AT P

8,,,~8
K-(S:L-rl(si) . -—11;'——-4- - Tl(si))+ . (3.9)




Finally, if Mv*(u) denotes the MGF of V*(C) , then Q* = Mv*(ln q/L) ,
which is the upper bound for Q . In the following section we illustrate

s e,

these bounds in a special case.

T e e -
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4. Lower And Upper Bounds For Q in A Special Case

In the present section we exhibit the method of determining lower
and upper bounds for the failure probability Q . in the following special
case. The curve C is an arc on a2 éircle of radius r , centered at the
origin, limited by rays having orientations s' and s''

- % <sg' s g" s% . The centers of the disks are distributed between

U and W, where U and W are circles centered at the origin, with
radii 0 < u <w < r . Moreover, ée assume that the centers of the
disks are uniformly distributed within this annular region, and their
random diameters, Y , are uniformly distributed between [a,b] ind

£

2
case was previously studied in [1]. We have shown that in the pres

case, K (s,t) = K+(s,t) £ K(t) . Explicit formulae for this functic
can be found in [1]. Notice that in the present case of C being a

pendently of their centers, where 0 < l—’-S u<wsr-~- %-. This spes

circular arc, 1(s) - rz(s) = Z/Zr for all s . Accordingly, in the

determination of Q* we replace K(t) by K (t - Jg) . The compu-

tation of the moments L and u follows the procedure described in

[1].
Let {nn » n21} be the normalized moments of V{C} , i.e.,

n, = E{Vn(C)/r (s"'-8")"} . The sequence {nn ; n2l} is decreasing and,
as shomn in [ 1] , lim n, = P1 » Which is the probability of complete

n->o
. o n
visibility of C . Furthermore, Mv(lpq/l) = I 27 n, s where
n=0 v

8= (Inq) r(s''-s')/L . One can approximate this MGF, to any degree of
accuracy, in the following manner. Given an arbitrary e , >0 , let
m be a positive integer such that

m i
- 1 1Y
i=0

Mo = Pl <S¢ . (4.1)

.
{
i
]
}
}

e maams i i
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Let

Then, & = (Mv(l—téﬂ) - Mvg[fl)

n
6-1 ; &-b n))‘ ; Iwi[n n]
= — -n. — -
j=ml i m il |< {=m+l i! m i

Mv*(l%ﬂ) can be approximated in the same manner. In Table 1 we provide
numerical values of the lower and upper bounds for Q , corresponding to
the following parameters of an annular region: r=1.0 , w=.6 , u=.4 .
The parameters of the distribution of Y are a=.1 and b=.5 . These
bounds are given for two values of y , two values of £ two values

of A=s8'""=-5s'", and q = .8 .

Table 1. Lower and Upper Bounds for Q , Circular Arc, C , And Annular

Region of Disk Centers

A = 120° A = 60°

u=l u=5 p=l p=5

2=.2 .126861 | .258360 | .353190 | .502616
.117760 | .210320 | .341425 | .454504

L=.4 .356616 | .521052 | .596354 | .721755
.337353 | .439304 | .580451 ! .661923

This table shows that in the present case the method developed here is
very satisfactory.

(4.2)

(4.3)

13
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